Active Filtering Functionality in Wind Turbines - Motivation

The offshore AC electrical infrastructure in Wind Power Plants (WPPs) connected via either HVAC transmission cable (e.g. Hornsea Wind Farm) or HVDC link (e.g. Gode Wind Farm) is a sensitive network because of its low damping caused by the design focused on low transmission losses. The combination of transformers and cables with low equivalent resistance within the electrical infrastructure makes very good resonance circuits due to the low damping. There are many possible resonance frequencies in the offshore grid with a large amount of cables and transformers connected. Such complex configuration as well as low active power dissipation (due to low resistance to reduce active power losses) creates challenges by means of harmonic performance, grid code compliance, power transmission, stability of grid-tied converters etc.

The presence of undamped resonances means that whenever an oscillation is excited (e.g. by non-linear components such as transformers, power electronics etc.) it takes long time for it to be damped out. The problem becomes even more severe when the system is unloaded, e.g. during energization or when some Wind Turbines (WTs) are out of service and the cable network is unloaded. When the system is loaded (active power is transmitted), the overall damping is higher and the harmonics are reduced faster than with an unloaded scenario.

Besides in case of widespread array cable system in the offshore electrical infrastructure resonance frequencies can shift due to changes in the system topology, e.g. number of WTs is varying, transformer or transmission cable disconnection, interlink operation etc. This furthermore creates challenges to introduce robust harmonic resonance mitigation measure. Typically one can recognize two ways of mitigating unwanted harmonics in modern power systems (i) passive filtering, (ii) Active Filtering (AF) by grid-tied converters. Variation of resonance frequencies caused by topology change requires large passive filters (e.g. damped high-pass filters such as C-type) which are not feasible, in many cases, to be installed offshore. Therefore, for optimization of offshore electrical infrastructure in WPPs AF (or a combination of active and passive filters) seems to be solution that is more appropriate.

The density of power in modern WTs is increasing meaning that they contribute more to the system’s quality of power. It could be either by higher harmonic pollution or by improved technical solutions leading to almost undistorted networks. In case of resonance networks, it is critical that the harmonic injection by WTs is very small and controlled. Therefore, utilization AF in WTs is a natural step forward to improve the overall distortion level of offshore networks in WPPs.

This entry was posted in Harmonics, Wind Farms and tagged , , . Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *