
The dynamics of DC-DC buck system is studied. System of
this type has a broad range of application in power control.
There are a lot of cases where electrical energy is processed
by power electronics before its final consumption. Power elec-
tronic technology is increasingly able to be found in home and
workplace. To obtain more completely description of power
electronic systems such phenomena as bifurcations charac-
teristic for nonlinear dynamics and chaos are studied [2].

The presence of switching elements, nonlinear compo-
nents and control methods implies that circuits are nonlinear,
time varying dynamical systems. Power converters show
strange and unable to observe basis of linear analysis meth-
ods behaviour such as bifurcations and chaos. In chaotic op-
erating mode it is possible to observe an undesirable increase
in switching loss, and in extreme case switch failure.

Studied system description

DC-DC buck power converter is presented as an example.
The subject is one of the simplest but very useful power con-
verters, a DC-DC buck converter, a circuit that converts a di-
rect current (DC) input to a DC output. Many switched mode
power supplies employ circuits closely related to it. The ex-
perimental example is a second order DC-DC buck converter
which output voltage is controlled by a pulse width modula-
tion (PWM) with a constant frequency, working in continuous
conduction mode (CCM). The switches in mathematical de-
scription are assumed to be ideal. In practise it is necessary
to regulate low-pass filter output voltage v against changes in
a input voltage and a load current, by adding a feedback con-
trol loop as in Fig. 1 [7].

The switched operating mode of converters implies a mul-
titopological model in which one particular circuit topology de-
scribes the system for a particular interval of time. For
constant frequency PWM the operation is cyclic, implying that
the topologies repeat themselves periodically. Thus, a natural
way to model such kind of operation is to split the system into
several subsystems, responsible for describing the system in
one subinterval [4].

The discontinuous conduction mode does not take
place in considered buck converter, and can be repre-
sented by a piecewise linear vector field. Using the nota-
tion x=[v,i]T, (yT donates the transpose of y) system
description looks as follow.

where:

also where ν is the capacitor voltage and i is the inductor cur-
rent and the ramp voltage is given by

where: Vl and Vu are respectively the lower and upper volt-
ages of the ramp and T its period and

where: A is the linear amplifier gain and Vref the reference voltage.

Methods of theoretical model
of the buck converter analysis

The nonlinear phenomena include bifurcations (sudden
changes in system operation), coexisting attractors (alterna-
tive stable operating modes), and chaos. If power converter is
going to be designed, a knowledge about these issues exis-
tence and its investigation methods is desired. There should
be emphasised that linear methods applied alone cannot give
a wide spectrum of information of nonlinear phenomena and
are insufficient in predicting and system analysing.

Poincaré map

When state vector evolution is known, there is a possibility to
discretise it using mapping. Poincaré map is the most widely
used discrete time model for DC-DC converters [3,4]. This
map can be obtained by sampling the system solution every
T seconds, at the beginning of each ramp cycle. This nonlin-
ear method of analysis gives a lot of information about sys-
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Fig. 1. DC-DC buck converter with feedback control loop
Rys. 1. Schemat badanego układu obniżającego napięcie
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tem. In contrast to other types of mapping, Poincaré map is
able to show aside from bifurcations and chaos also differ-
ence between quasiperiodic attractor and strange attractor
(chaotic operation).

Bifurcations

In the study of dynamical systems the appearance of a topo-
logically nonequivalent phase portrait under variation of pa-
rameters is called a bifurcation. Thus, a bifurcation is a change
of the topological type of the system as its parameters pass
through a bifurcation value [3]. If one varies bifurcation pa-
rameters the phase portrait may deform slightly without alter-
ing its qualitative (i.e., topological) features, or sometimes the
dynamics may be modified significantly, producing a qualita-
tive change in the phase portrait.

If an iterative map is used to model the system, the lin-
earised system needs to be examined. Suppose the iterative
map is:

then the Jacobian Jf = ∂f/∂xT characterising the linearised sys-
tem is given by evaluated at the fixed point. The eigenvalues
of system can be obtained by solving the characteristic equa-
tion det(µ1 - Jf) = 0.

If one of the eigenvalues is observed to move out of the
unit circle on the real line through the point - 1, then period
doubling bifurcation appears. The bifurcation associated with
the appearance of µ1 = -1 is called a period-doubling bifurca-
tion presented schematically in Fig. 3.

Periodic orbits of periods greater than one can appear or
disappear because of saddle-node bifurcations (see Fig. 4),
and can undergo period doubling bifurcations. This kind of be-
haviour exists in analysed DC-DC buck converter.

At a period-doubling bifurcation from a period-k orbit, two
branches of period-2k points emanate from a path of period-
k points. When the branches split off, the period-k points
change stability.

Bifurcation can sometimes be catastrophic. For example,
a converter may operate nicely when a certain parameter is
kept below a certain threshold. Beyond this threshold,
a chaotic attractor may suddenly take over, with its trajectory
extended to a much wider voltage and current ranges causing
damage to the devices. Thus, the study of bifurcation in an
engineering system is relevant not only to its functionality but
also to reliability and safety [6,8].

Computer simulation

Assuming the notation used previously, the parameters of the
circuit are: R, C, and L, the resistance, the capacitance and
the inductance of the circuit respectively. Vl and Vu, the lower
and upper voltages of the ramp in feedback control loop and
T its period, A is the gain of the amplifier and Vref the reference
voltage. Vin is the input voltage and established as the bifur-
cation parameter varied in interval [20 V, 35 V]. The buck con-
verter is investigated using the following parameter values:
L = 20 mH, C = 47 µF, R = 22 < Ω, A = 8.2, Vref = 11.3 V,
Vl = 3.8 V, Vu = 8.2 V, ramp frequency f = 2.5 kHz.

Theoretical model simulation

One of the routes to chaos observed in studied DC-DC buck
converter is by period doubling [5,6], which continues until
there are no further stable states. At the beginning of simula-
tion when input voltage is 20 V circuit exhibits periodic be-
haviour. During system bifurcation parameter changes,
periodic state becomes unstable because of period doubling
bifurcation.

In spectral analysis shown in Fig. 5 it is observed as sec-
ond frequency appearing at half the driving frequency. Fur-
ther increase in input voltage results in splitting of two
periods, giving quadrupling and finally chaos. In periodic sys-
tem, only one harmonic peak occurs, associated with driving
frequency. During bifurcation parameter variations the sys-
tem changes its behaviour, more peaks occur, associated
with harmonics and subharmonics of the system. This is
called the period doubling cascade route to chaos. Because
it is easy to vary, the input voltage Vin was chosen as the bi-
furcation parameter. The iL, vc and vco were sampled at the
start of every ramp cycle and plotted as the bifurcation dia-
gram shown in Fig. 6. A period doubling route to chaos is vis-
ible. This process is repeated for every discrete value of the
bifurcation parameter in the interval Vin = [20,35] V.

Fig. 2. Poincaré map of limit cycle in the Poincaré plane
Rys. 2. Prezentacja odwzorowania Poincaré cyklu granicznego na
płaszczyźnie Poincaré

Fig. 3. An attracting fixed point loses stability α = 0 in a perioddou-
bling bifurcation. For α > 0 there is a saddle fixed point and a pe-
riod-two attractor
Rys. 3. Przyciągający punkt stały traci stabilność dla α = 0 na dro-
dze bifurkacji podwojenia okresu. Dla α > 0 istnieje siodłowy punkt
stały oraz dwuokresowy atraktor

Fig. 4. A fixed point appears at parameter α = 0 in a saddle-node bi-
furcation. For α > 0 there is an attracting fixed point and a saddle
fixed point
Fig. 4. Punkt stały pojawia się dla α = 0 na drodze bifurkacji siodło-
węzeł. Dla α > 0 występuje przyciągający punkt stały oraz siodłowy
punkt stały
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There was calculated that stable 1T-periodic limit cycle is
found at the beginning of simulation and continued until some
value near 24.5 V. Then, a first period doubling bifurcation oc-
curs, and the stability of the 1T-periodic orbit is lost in favour
of the 2T-periodic orbit. This 2T-periodic orbit also loses sta-
bility in a period doubling bifurcation near 31.15 V and 4T-pe-
riodic appears. Near the last period doubling bifurcation at
approximately 32.4 V, there is a large chaotic behaviour.

Coexisting attractors are also able to detect in studied
buck converter. When Vin is about 24 V, unstable chaotic or-
bits coexist with the periodic attractor, giving rise to a long
transient chaotic behavior before the converter settles to the
stable periodic orbit. A parallel branches of 6T-periodic orbit
are detected in a neighbourhood of Vin = 30.000 V after sad-

dle-node bifurcation. This undergoes its own period-doubling
cascade which ends in a six-piece chaotic attractor coexisting
with the main 2T-periodic stable orbit.

Fig. 6. Bifurcation diagram with Vin as the bifurcation parameter
Rys. 6. Diagram bifurkacyjny z Vin przyjętym jako parametr bifurka-
cyjny

Fig. 5. Spectral analysis of inductor current: a) 1T-periodic inductor
current power spectrum density; b) 2T-periodic inductor current
power spectrum density; c) chaotic inductor current power spec-
trum density
Rys. 5. Analiza spektralna prądu w cewce: a) widmo gęstości mocy
1-okresowego prądu w cewce; b) widmo gęstości mocy 2-okreso-
wego prądu w cewce; c) widmo gęstości mocy chaotycznego prze-
biegu prądu w cewce
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Fig. 7. Inductor current changes during period doubling cascade
Rys. 7. Prąd w cewce ulaga zmianie na drodze kaskady podwojenia
okresu

Fig. 8. Strange attractor in DC-DC buck converter, inductor current
against capacitor voltage
Rys. 8. Osobliwy atraktor zaobserwowany w układzie obniżającym
napięcie, trajektorai fazowa przedstawiona na płaszczyźnie prąd-
napięcie
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Fig. 7 shows inductor current changes during bifurcation
parameter variation. It is able to observe how the amplitude of
current in inductor can increase from 1T-periodic waveform to
chaotic. The maximum value was measured in chaotic oper-
ating mode. Strange attractor with non-integer dimension
characteristic for chaotic behaviour is shown in Fig. 8.

The Poincaré section diagram come into being as a result
of simulated waveforms sampling synchronised with the ramp
voltage, one sample of the current and voltage variables at
the beginning of the ramp. Then the representation in the state
space of the points obtained with this procedure gives us the
discrete evolution of the system. Period doubling route to
chaos shown in Poincaré section is presented in Fig. 9.

Electrical circuit computer simulation

Before DC-DC buck converter physical realisation of the de-
signed circuit was simulated in PSpice. The observation of
effects characteristic for nonlinear dynamics like bifurcations
and chaos in circuit with voltage feedback was carried out. In
the designed circuit the power circuit uses a power metal-
oxide-semiconductor field-effect transistor (MOSFET)
IRF9640 and power standard recovery diode 1N4001. The
DC input voltage was varied from 20 to 35 V as in mathe-
matical model, control circuit was supplied from a voltage
regulator LM7812. The ramp generator, based on a 555
timer, produces a sawtooth waveform. A bandwidht dual op-
erational amplifier TL082 is used as a comparator and a dif-
ference amplifier.

The suggestion of practical controlled DC-DC buck con-
verter is shown in Fig. 10. The circuit is closely related to
these used in switch-mode power supplies. The coil current
plotted against the capacitor voltage constitute strange at-
tractor in chaotic operating mode which is shown in Fig. 11.

Practical verification

In order to verify the theoretical model an experimental buck
converter was built. The main aim was to make its operation
close to ideal piecewise linear model. Builded converter was
very similar to simulated in PSpice. As distinct from PSpice
simulation as the comparator is applied LM311 and as the dif-
ference amplifier is used a complementary metal-oxide-
semiconductor (CMOS) operational amplifier LMC662.

A very good premise of chaotic behaviour presence is non-
periodic attractor shown in Fig. 12. Likewise in computer sim-
ulation there is a possibility to observe chaotic phenomena in
laboratory experiment. In Fig. 13 there is a Poincaré section
measured in a laboratory similar to obtained from the mathe-
matical model computer simulation in Fig. 9d.

Comparison of resolutes

In order to verify obtained results from computer simulations
and laboratory experiment there will be a comparison pre-
sented. The outcomes of mathematical model from Matlab in
comparison with the results from PSpice simulated circuit and
the physical laboratory experiment will be shown.

Fig. 9. Poincaré section diagram: a) 1T-periodic operation; b) 2T-periodic operation; c) 4T-periodic operation; d) chaotic operation
Rys. 9. Płaszczyzny Poincaré: a) 1-okresowa praca układu; b) 2-okresowa praca układu; c) 4-okresowa praca układu; d) praca chaotyczna
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Fig. 11. Strange attractor in DC-DC buck converter obtained from
PSpice
Rys. 11. Osobliwy atraktor w układzie obniżającym napięcie otrzy-
many z PSpice’a

Fig. 12. Strange attractor in DC-DC buck converter measured in a
laboratory
Rys. 12. Osobliwy atraktor występujący w układzie obniżającym
napięcie zaobserwowany w laboratorium
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Fig. 10. Circuit diagram of the experimental buck converter
Rys. 10. Propozycja obwodu elektrycznego
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The results were obtained from three sources: mathemat-
ical model numerical calculations in Matlab; simulation using
PSpice, with consideration of additional effects present in
practical realisation; results from the laboratory experiment.
The 4T-orbit was chosen for the sake of sufficient complexity
and is presented in Fig. 14. Such a presentation enables clear
observation of behaviour present in the system. This attractor
appears after second flip bifurcation and is a premise of
chaotic phenomena existed in the buck converter.

Conclusion

The main aim was to present nonlinear system analysing
methods and its application in power electronics. The DC-DC
second-order buck converter with the voltage control was
taken as an example. The main objective was to build a con-
verter which is able to work in chaotic operating mode basis
of the mathematical model. Simultaneously there were shown
analytical methods helpful in detecting, analysing and classi-
fying this kind of nonlinear behaviour.

Additionally it was presented that nonlinear analysis de-
scribes analysed system more accurately and explains phe-
nomenons such as subharmonics, bifurcations and chaos,
which cannot be detected by using linear approach of analy-
sis. It proves that it could be useful in circuits study, specially
in a field where high reliability is essential, like in spacecraft
power systems or terrestrial power systems.

The investigation was carried out in three different ways
and the results were compared. There were considered three
independent cases: the mathematical model simulated in Mat-
lab, the circuit builded from components exist in reality and
simulated in PSpice and the laboratory experiment. All of
cases give satisfactory results and they were described in rel-
evant sections. A very good agreement between theory and
experiment was reached.
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Fig. 13. Poincaré section characteristic for chaotic behaviour
Rys. 13. Płaszczyzna Poincaré charakterystyczna dla pracy chao-
tycznej układu

Fig. 14. 4T-periodic limit cycle comparison: a) 4T-periodic orbit
from Matlab; b) 4T-periodic orbit from Pspice; c) 4T-periodic orbit
obtained in a laboratory
Rys. 14. Porównanie 4-okresowego cyklu granicznego: a) orbita 4-
okresowa wyznaczona w programie Matlab; b) orbita 4-okresowa
z PSpice’a; c) orbita 4-okresowa otrzymana w laboratorium
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