Categories
Harmonics Wind Farms

Harmoniske svingninger i store havmølleparker

This time Danish abstract of the PhD report entitled "Harmonics in Large Offshore Wind Farms (Harmoniske Svingninger i Store Havmølleparker)". The project was defended on the 2nd of February in 2012 at Aalborg University, Denmark.
 

Antallet af vindmøller med frekvensomformer til nominel effekt i mw-klassen, der anvendes til store havmølleparker, er stærkt stigende. De er tilsluttet et udbredt og forgrenet mellemspændingskabelnet stort set uden egetforbrug og er tilsluttet transmissionsnettet ved hjælp af lange højspændingskabler. Det stiller vindmølleindustrien og netselskaberne over for nye udfordringer i forhold til at forstå harmoniske svingningers  karakter, udbredelse og virkning. Vindmøllebranchen udvikler sig hastigt. Det stiller branchen over for nye udfordringer, hvilket har medført gennemførelse af flere og flere forskningsprojekter, der omhandler analyse af harmoniske svingninger med særligt fokus på vindenergi, og det er grunden til, at dette projekt blev påbegyndt og gennemført med et positivt resultat. Virksomhedens erfaring fra tidligere havmølleprojekter i forbindelse med forskellige harmoniske aspekter har medført et behov for at udføre omfattende undersøgelser af harmoniske svingninger.

Forskningsprojektet blev til på branchens foranledning, og blev gennemført i et  i samarbejde med institut for Energiteknik, Aalborg Universitet.  I forbindelse med planlægningen af projektforløbet blev rammerne for projektet lagt ud fra en traditionel rationalistisk tilgang for at kunne levere viden og en dybere forståelse for forskellige aspekter (f.eks. målinger, databehandling, dataanalyse, modellering, modelanvendelse) i studier af harmoniske svingninger. På baggrund af disse rammer, blev rapportens opbygning fastlagt. Læseren kan dermed følge alle projektforløbets stadier startende med målinger, databehandling og –analyse og sluttende med modellering og modelanvendelse. Forskellige aspekter af tidsdomænevalidering, frekvensdomæne og af brugen af statistiske metoder nævnes i forbindelse med specifikke problemer.

Målinger udgør en vigtig del af industriel forskning. Derfor er dette projekt unikt samtidig med, at det tilfører den akademiske verden vigtig praksis-orienteret indsigt og vice versa. Det er bevist, at analyse af systemer som store havmølleparker indebærer mange aspekter, der omhandler udvidede og mere præcise modeller, komplekse målekampagner og selvfølgelig bedre og mere anvendelige databehandlingsmodeller. Før de ovennævnte aspekter kan behandles, er det nødvendigt at have et pålideligt og robust målesystem til rådighed. Dette opnås gennem grundigt design af målesystemets hardware- og softwarelag.

I rapporten forklares det, at det er meget vigtigt at kende typen af de harmoniske svingninger, der genereres i store havmølleparker for at kunne anvende de rigtige databehandlingsteknikker. Tids-/frekvensanalyse baseret på multiresolution wavelettransformation bruges til at udføre tids-/frekvensdomæneanalyser, som kan bidrage til at definere de harmoniske svingningers oprindelse og observere korttidsvariationer. Ikke-parametrisk spektralanalyse anvendes på interpolerede signaler tilpasset de varierende elsystemfrekvenser. Forskellige databehandlingsteknikker er præsenteret og anvendt afhængig af signalet (dvs. om det er stationært eller ikke-stationært) eller typen af harmoniske svingninger (dvs. spline resampling eller direkte spektralanalyse). På baggrund af grundig analyse af målinger ses det, at visse harmoniske komponenter, der dannes på netsiden af omformeren i vindmøllen påvirkes af to faste frekvenser, dvs. af elsystemets grundfrekvens og basisbærefrekvenssignalet. Derfor er målinger af harmoniske svingninger udført primært med kommercielle spændingskvalitetsmålere i nogen grad utilstrækkelige, og den efterfølgende vurdering af resultaterne kan derfor være misvisende.

Forskellige statistiske værktøjer er anvendt til at analysere oprindelsen og karakteren af forskellige harmoniske komponenter. En omfattende sammenligning af harmoniske spændinger og strømme baseret på en vurdering af den sandsynlige fordeling samt passende statistiske beregninger (f.eks. middel, varians, sandsynlig tæthedsfunktion mv.) anvendes. En sådan tilgang giver et bedre overblik og en bedre sammenligning af harmoniske komponenters variationer og forekomst.

Flere frekvensdomænemetoder til beskrivelse af vindmølleparker bestående af flere komponenter såsom vindmøller, transformere, kabler mv. beskrives og sammenlignes. Det forklares, at store havmølleparker kan producere yderligere uønskede resonanser i lavfrekvensområdet. Dette kan have en betydelig indflydelse på systemets generelle stabilitet. Derfor er analyse og designoptimering af store havmølleparker mere komplekst end analyse og designoptimering af små landmølleparker.

I dag er vindmøller komplekse anlæg udstyret med den nyeste teknologi. Derfor er analyse af harmoniske svingninger i sådanne anlæg ikke så ligetil. På grund af vindmøllernes kompleksitet kan man ved studier af harmoniske svingninger fokusere på flere forskellige aspekter såsom reguleringsstrategi, moduleringsteknik, omformerdesign og hardwareimplementering.

Forskellige reguleringsstrategier er blevet overvejet sammen med deres indflydelse på dannelsen af harmoniske svingninger og generel systemstabilitet. Analyser er hovedsaglig udført i frekvensdomænet. En analyse går ud på at finde ud af, hvordan forskellige komponenter i reguleringskonceptet (f.eks. filtre, kontrolenheder mv.) kan påvirke styringen og dens evne til at udkompensere harmoniske svingninger. Reguleringsstrategiernes indflydelse på mølleparkens generelle stabilitet er ligeledes blevet grundigt undersøgt. Egnede stabilitetsindeks er foreslået og anvendt i flere konkrete cases.

Omhyggeligt modelerede ækvivalenter af store vindmølleparker i frekvensdomænet sammen med møllernes frekvensrespons giver et godt overblik over, hvordan store havmølleparker reagerer ved forskellige frekvenser. En sådan tilgang har vist gode resultater i forbindelse med studier af eksisterende mølleparker.

Da harmoniske svingninger i vindmøller og vindmølleparker har forskellig oprindelse og er af forskellige typer, kan det være problematisk at sammenligne dem. Derfor er selektiv validering af specifikke frekvenskomponenter til tider mere anvendelig. Det blev observeret, at sammenligning af resultater i frekvensdomænet og tidsdomænet og anvendelse af statistiske metoder er nøglen til forståelse af resultaterne.

På baggrund af de præsenterede studier kan det ses, at store havmølleparker sammenlignet med typiske landmølleparker kan generere flere uønskede resonansscenarier. Uønskede resonanser kan påvirke mølleparkens generelle stabilitet og ydelse (f.eks. kan harmonisk resonans anslåsog forstærkes). Derfor er det meget vigtigt at analysere mølleparker grundigt, især store havmølleparker, også ud fra et harmonisk perspektiv.

Denne erhvervsPhD fokuserer på at finde frem til de bedst mulige metoder til at gennemføre forskellige harmoniske studier af havmølleparker, herunder en række forhold som ikke før er blevet overvejet. Anvendelse af nye metoder og en udvidelse af rækken af modeller bidrager til at opnå den højere rådighed, der er nødvendig på havmøllerparker, hvis de skal fungere som store kraftværker i det elektriske system.

Categories
Harmonics Wind Farms

Harmonics in large offshore wind farms

English abstract of the PhD report entitled "Harmonics in Large Offshore Wind Farms". The project was defended on the 2nd of February in 2012 at Aalborg University, Denmark.
 

The number of wind turbines with full converters in the MW range used in large offshore wind farms is rapidly increasing. They are connected through a widespread MV cable network with practicably no consumption and connected to the transmission system by long HV cables. This represents new challenges to the industry in relation to understanding the nature, propagation and effects of harmonics. Recently, the wind power sector is rapidly developing. This creates new challenges to the industry, and therefore more and more research projects, including harmonic analyses especially focused on wind power applications, are conducted and that is why the project was initiated and successfully developed. Also experience from the past regarding offshore projects developed in the company and various harmonic aspects causes a need to carry out extensive harmonic research.

The research project was initiated by the industry and carried out in cooperation with academia. In order to organize the project development process, the research development framework was suggested based on rationalistic tradition approach in order to provide knowledge and better understanding of different aspects (e.g. measurements, data processing, data analysis, modelling, models application) in harmonic studies. Based on the framework, also the structure of the report was organized. This allows the reader to go through all of the stages in project development starting from measurements, through data processing and analysis, and finally ending up on modelling and models application. Different aspects of validation in time domain, frequency domain, and by application of statistical methods are mentioned in relation to respective problems.

Measurements constitute a core part in industry-oriented research. Due to this fact, the research project owes its uniqueness and contributes new insight to the academia. It is proven that an analysis of such systems as large offshore wind farms considers many aspects related to extended and accurate models, complex measurement campaigns and of course appropriate and more suitable data processing methods. Before any of the above aspects could be seriously taken into consideration, a reliable and robust measurement system is needed. This is achieved by carefully designing the hardware and the software layers of the measurement system.

It is explained in the report that it is of great importance to know the nature of generated harmonics in large offshore wind farms in order to apply the most suitable data processing technique. Time-frequency analysis based on multiresolution wavelet transform is used in order to perform time-frequency domain analysis helpful to distinguish harmonic origin and observe short-term variation. Non-parametric spectrum estimation is successfully applied to interpolated signals adjusted according to the varying power system frequency. Different data processing techniques are presented and applied depending on the signal (i.e. stationary or non-stationary) or harmonic nature (i.e. spline resampling or direct spectrum estimation). Based on an in-depth investigation of measurements, it is observed that certain harmonic components generated by the grid-side converter in the wind turbine are affected by two driven frequencies, i.e. the power system fundamental frequency and the carrier signal fundamental frequency. Therefore, harmonic assessment made by major part of commercial power quality meters is to some extent inappropriate, and their measurements interpretation can be misleading.

Different statistical tools were used in order to analyse the origin and nature of various harmonic components. A comprehensive comparison of harmonic voltages and currents based on probability distribution estimation and appropriate statistics calculation (mean, variance, probability density function, etc.) is applied. Such approach gives a better overview and comparison of harmonic components variation and occurrence frequency.

Several frequency domain methods of describing wind farms comprising of various components such as wind turbines, transformers, cables, etc. are shown and compared. It is explained that large offshore wind farms can introduce additional unwanted resonances within the low frequency range. This can significantly affect overall system stability. Therefore, the analysis and design optimization of large offshore wind farms are more complex than smaller onshore wind farms.

Nowadays, wind turbines are complex devices equipped with the newest technologies. Therefore, also harmonic analysis of such devices is not a straightforward task. Harmonic studies, due to the complexity of the wind turbine structure, can be focused on several parts such as control strategy, modulation technique, converter structure, and hardware implementation.

Various control strategies are taken into consideration and their impact on possible harmonic emission and overall system stability. An analysis is performed mainly in the frequency domain. One analyses how particular components in the control structure (e.g. filters, controllers, etc.) can affect the control and its harmonic rejection capability. The influence of control strategies on overall wind farm stability is also deeply investigated. Appropriate stability indices are suggested and applied in several study cases.

Carefully modelled and aggregated large wind farms in frequency domain together with the wind turbines frequency response give a good overview about large offshore wind farm behaviour for different frequencies. Such approach is successfully used in studies of real-life existing wind farms.

Since harmonics in wind turbines and wind farms are characterized by different origin and nature, comparison of them may be problematic. Therefore, sometimes selective validation of particular frequency components is more suitable. It was observed that comparison of results in frequency domain and time domain, as well as application of statistical methods, is the core part of results understanding.

Based on presented studies, we see that large offshore wind farms, in comparison to typical onshore wind farms, can affect more unwanted resonance scenarios. Unwanted resonances can cause overall wind farm stability and performance (e.g. unwanted harmonic excitation and amplification). Therefore, it is of great importance to carefully analyse wind farms, especially large offshore wind farms, also from a harmonic perspective.

This industrial PhD project is focused on investigating the best possible way to perform various harmonic studies of offshore wind farms including some conditions not taken into consideration before. Application of new methods and widening the range of models contributes to achieve the necessary higher reliability of offshore wind farms as large power generation units in electrical power systems.